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Abstract—Prognostics has taken center stage in Condition 

Based Maintenance (CBM) where it is desired to estimate 

Remaining Useful Life (RUL) of a system so that remedial 

measures may be taken in advance to avoid catastrophic 

events or unwanted downtimes. Validation of such 

predictions is an important but difficult proposition and a 

lack of appropriate evaluation methods renders prognostics 

meaningless. Evaluation methods currently used in the 

research community are not standardized and in many cases 

do not sufficiently assess key performance aspects expected 

out of a prognostics algorithm. In this paper we introduce 

several new evaluation metrics tailored for prognostics and 

show that they can effectively evaluate various algorithms as 

compared to other conventional metrics. Four prognostic 

algorithms, Relevance Vector Machine (RVM), Gaussian 

Process Regression (GPR), Artificial Neural Network 

(ANN), and Polynomial Regression (PR), are compared. 

These algorithms vary in complexity and their ability to 

manage uncertainty around predicted estimates. Results 

show that the new metrics rank these algorithms in a 

different manner; depending on the requirements and 

constraints suitable metrics may be chosen. Beyond these 

results, this paper offers ideas about how metrics suitable to 

prognostics may be designed so that the evaluation 

procedure can be standardized.
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1. INTRODUCTION 

Prognostics is an emerging concept in condition based 

maintenance (CBM) of critical systems. Along with 

developing the fundamentals of being able to confidently 

predict Remaining Useful Life (RUL), the technology calls 

for fielded applications as it inches towards maturation. This 

requires a stringent performance evaluation so that the 

significance of the concept can be fully understood. 

Currently, prognostics concepts lack standard definitions 

and suffer from ambiguous and inconsistent interpretations. 

This lack of standards is in part due to the varied end-user 

requirements for different applications, a wide range of time 

scales involved, available domain information, domain 

dynamics, etc. to name a few issues. The research 

community has used a variety of metrics based largely on 

convenience with respect to their respective requirements. 

Very little attention has been focused on establishing a 

common ground to compare different efforts.  

This paper builds upon previous work that surveyed metrics 

in use for prognostics in a variety of domains including 

medicine, nuclear, automotive, aerospace, and electronics. 

[1]. The previous effort suggested a list of metrics to assess 

critical aspects of RUL predictions. This paper will show 

how such metrics can be used to assess the performance of 

prognostic algorithms. Furthermore, it will assess whether 

these metrics capture the performance criteria for which they 

were designed, i.e. to address prognostics specific 

shortcomings in classical metrics available from the 

literature. The paper will focus on metrics that are 
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specifically designed for prognostics beyond conventional 

metrics currently being used for diagnostics and other 

forecasting applications. These metrics in general address 

the issue of how well the RUL prediction estimates improve 

over time as more measurement data become available. A 

good prognostic algorithm should not only improve in RUL 

estimation but also ensure a reasonable prediction horizon 

and confidence levels on the predictions. 

Overall the paper is expected to enhance a general 

understanding of these metrics so that they can be further 

refined and be accepted by the research community as 

standard metrics for the performance assessment of 

prognostics algorithms.  

2. MOTIVATION  

Prognostics technology is reaching a point where it must be 

evaluated in real world environments in a truly integrated 

fashion. This, however, requires rigorous testing and 

evaluation on a variety of performance measures before they 

can be certified for critical systems. For end-of-life 

predictions of critical systems, it becomes imperative to 

establish a fair amount of faith in the prognostic systems 

before incorporating their predictions into the decision-

making process. Furthermore, performance metrics help 

establish design requirements that must be met. In the 

absence of standardized metrics it has been difficult to 

quantify acceptable performance limits and specify crisp and 

unambiguous requirements to the designers. Performance 

evaluation allows comparing different algorithms and also 

yields constructive feedback to further improve these 

algorithms.  

Performance evaluation is usually the foremost step once a 

new technique is developed. In many cases benchmark 

datasets or models are used to evaluate such techniques on 

common ground so they can be fairly compared. Prognostic 

systems, in most cases, have neither of these options. 

Different researchers have used different metrics to evaluate 

their algorithms, making it rather difficult to compare 

various algorithms even if they have been declared 

successful based on their respective evaluations. It is 

accepted that prognostics methods must be tailored for 

specific applications, which makes it difficult to develop a 

generic algorithm useful for every situation. In such cases 

customized metrics may be used but there are characteristics 

of prognostics applications that remain unchanged and 

corresponding performance evaluation can establish a basis 

for comparisons. So far very little has been done to identify 

common ground when it comes to testing and comparing 

different algorithms. In two surveys of methods for 

prognostics (one of data-driven methods and one of 

artificial-intelligence-based methods) [2, 3], it can be seen 

that there is a lack of standardized methodology for 

performance evaluation and in many cases performance 

evaluation is not even formally addressed. Even the ISO 

standard [4] for prognostics in condition monitoring and 

diagnostics of machines lacks a firm definition of such 

metrics. Therefore, in this paper we present several new 

metrics and show how they can be effectively used to 

compare different algorithms. With these ideas we hope to 

provide some starting points for future discussions. 

3. PREVIOUS WORK 

In a recent effort a thorough survey of various application 

domains that employ prediction related tasks was conducted 

[1]. The central idea there was to identify established 

methods of performance evaluation in the domains that can 

be considered mature and already have fielded applications. 

Specifically, domains like medicine, weather, nuclear, 

finance and economics, automotive, aerospace, electronics, 

etc. were considered. The survey revealed that although each 

domain employs a variety of custom metrics, metrics based 

on accuracy and precision dominated the landscape. 

However, these metrics were often used in different contexts 

depending on the type of data available and the kind of 

information derived from them. This suggests that one must 

interpret the usage very carefully before borrowing any 

concepts from other domains. A brief summary of the 

findings is presented here for reference. 

Domains like medicine and finance heavily utilize statistical 

measures. These domains benefit from availability of large 

datasets under different conditions. Predictions in medicine 

are based on hypothesis testing methodologies and metrics 

like accuracy, precision, interseparability, and resemblance 

are computed on test outcomes. In finance, statistical 

measures are computed on errors calculated based on 

reference prediction models. Metrics like MSE (mean 

squared error), MAD (mean absolute deviation), MdAD 

(median absolute deviation), MAPE (mean absolute 

percentage error), and their several variations are widely 

used. These metrics represent different ways of expressing 

accuracy and precision measures. The domain of weather 

predictions mainly uses two classes of evaluation methods, 

error-based statistics and measures of resolution between 

two outcomes. A related domain of wind mill power 

prediction uses statistical measures already listed above. 

Other domains like aerospace, electronics, and nuclear are 

relatively immature as far as fielded prognostics applications 

are concerned. In addition to conventional accuracy and 

precision measures, a significant focus has been on metrics 

that assess business merits like ROI (return on investment), 

TV (technical value), life cycle cost other than reliability 

based metrics like MTBF (mean time between failure) or the 

ratio MTBF/MTBUR (mean time between unit 

replacements). 

Several classifications of these metrics have been presented 

in [1] that are derived from the end use of the prognostics 

information. It has been argued that depending on the end 

user requirements one must choose appropriate sets of these 
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metrics or their variants to appropriately evaluate the 

performance of the algorithms. 

4. APPLICATION DOMAIN 

In this section we describe the application domain we used 

to show how these new prognostics metrics can be used to 

compare different algorithms.  

INL Battery Dataset 

In 1998 the Office of Vehicle Technologies at the U.S. 

Department of Energy initiated the Advanced Technology 

Development (ATD) program in order to find solutions to 

the barriers limiting commercialization of high-power 

Lithium-ion batteries for hybrid-electric and plug-in electric 

vehicles. Under this program, a set of second-generation 

18650-size Lithium-ion cells were cycle-life tested at the 

Idaho National Laboratory (INL).  

The cells were aged under different experimental settings 

like temperature, State-of-Charge (SOC), current load, etc. 

Regular characterization tests were performed to measure 

behavioral changes from the baseline under different aging 

conditions. The test matrix consisted of three SOCs (60, 80, 

and 100%), four temperatures (25, 35, 45, and 55˚C), and 

three different life tests (calendar-life, cycle-life, and 

accelerated-life) [5]. Electrochemical Impedance 

Spectroscopy (EIS) measurements were recorded every four 

weeks to estimate battery health. EIS measurements were 

then used to extract internal resistance parameters 

(electrolyte resistance: RE and charge transfer resistance: 

RCT, see Figure 1) that have been shown to empirically 

characterize ageing characteristics using a lumped parameter 

model for the Li-ion batteries [6].  
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Figure 1 – Internal parameter values are used as 

features extracted from EIS measurements to 

characterize battery health. 

As shown in Figure 2, battery capacity was also measured in 

ampere hours by measuring time and currents during 

discharge cycle for the batteries. For the data used in our 

study, the cells were aged at 60% SOC and at temperatures 

of 25°C and 45°C. The 25°C data is used solely for training 

while the 45°C data is used for both training as well as 

testing. For this application battery failure was declared 

when the maximum charge retention capacity of the battery 

is reduced by 30%, i.e. at 0.7 AmpHr for the batteries with 1 

AmpHr maximum capacity. 

Different approaches can be taken to predict battery life 

based on the above measurements. One approach makes use 

of EIS measurements to compute RE+RCT and then uses 

prediction algorithms to predict evolution of these 

parameters. RE+RCT have been shown to be directly related 

to battery capacity and hence their evolution curve can be 

easily transformed into battery RUL. Another approach 

directly tracks battery capacity and trends it to come up with 

RUL estimates. In the next sections we describe our 

prediction algorithms and the corresponding approaches that 

were used to estimate battery life. 

0 8 16 24 32 40 48 56 64 72

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Time (weeks)

C
a

p
a

c
it

y
 (

A
m

p
H

r)

Battery Capacity Decay with Time

Failure Threshold

EOL (64.46 weeks)

 
Figure 2 – Battery capacity decay profile at 45°C. 

5. ALGORITHMS EVALUATED 

In this effort we chose four data-driven algorithms to show 

the effectiveness of various metrics in evaluating their 

performance. These algorithms range from simple 

polynomial regression to sophisticated Bayesian learning 

methods. The approaches used here have been described 

before in [6, 7], but they are repeated here for the sake of 

completeness and readability. Also mentioned briefly is the 

procedure for how each of these algorithms was applied to 

the battery health management dataset. 

Polynomial Regression (PR) Approach 

We employed a simple data-driven routine to establish a 

baseline for battery health prediction performance and 

uncertainty assessment. For this data-driven approach, as the 

first step, the equivalent damage threshold in the RE+RCT 

(dth=0.033) is gleaned from the relationship between RE+RCT 

and the capacity C at baseline temperature (25ºC). Next, via 

extracted features from the EIS measurements, RE+RCT was 

tracked at elevated temperatures (here 45ºC). Ignoring the 

first two data points (which behave similar to what is 

considered as “wear-in” pattern in other domains), a
 
second 

degree polynomial was used at the prediction points to 

extrapolate out to the damage threshold. This linear 
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extrapolation is then used to compute the expected RUL 

values.  

Relevance Vector Machines (RVM) 

The Relevance Vector Machine (RVM) [8] is a Bayesian 

form representing a generalized linear model of the Support 

Vector Machine (SVM) with identical functional form [9]. 

Although, SVM is a state-of-the-art technique for 

classification and regression, it suffers from a number of 

disadvantages, one of which is the lack of probabilistic 

outputs that make more sense in health monitoring 

applications. The RVM attempts to address these very issues 

in a Bayesian framework. Besides the probabilistic 

interpretation of its output, it typically uses a lot fewer 

kernel functions for comparable generalization performance. 

This type of supervised machine learning starts with a set of 

input vectors {xn}, n = 1,…, N, and their corresponding 

targets {tn}. The aim is to learn a model of the dependency 

of the targets on the inputs in order to make accurate 

predictions of t for unseen values of x. Typically, the 

predictions are based on some function F(x) defined over 

the input space, and learning is the process of inferring the 

parameters of this function. The targets are assumed to be 

samples from the model with additive noise: 

    ( ) nnn F ε+= wxt ;        (1) 

where, εn are independent samples from some noise process 

(Gaussian with mean 0 and variance σ
2
). Assuming the 

independence of tn, the likelihood of the complete data set 

can be written as: 
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where, w = (w1, w2,…, wM)
T
 is a weight vector and Φ is the 

N x (N+1) design matrix with Φ = [φ(t1), φ(t2), … φ(tN),]
T
; 

in which  φ(tN) = [1, K(xn,x1), K(xn,x2), …, K(xn,xN)]
T
, 

K(x,xi) being a kernel function.   

To prevent over-fitting a preference for smoother functions 

is encoded by choosing a zero-mean Gaussian prior 

distribution over w parameterized by the hyperparameter 

vector η. To complete the specification of this hierarchical 

prior, the hyperpriors over η and the noise variance σ
2
 are 

approximated as delta functions at their most probable 

values ηMP and σ
2
MP. Predictions for new data are then made 

according to: 

          ∫= .),,|(),|*()|*( 22
wtwwttt dppp MPMPMP σησ      (3) 

Gaussian Process Regression (GPR) 

Gaussian Process Regression (GPR) is a probabilistic 

technique for nonlinear regression that computes posterior 

degradation estimates by constraining the prior distribution 

to fit the available training data [10]. A Gaussian Process 

(GP) is a collection of random variables any finite number 

of which have a joint Gaussian distribution. A real GP f(x) is 

completely specified by its mean function m(x) and co-

variance function k(x,x’) defined as: 
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The index set ℜ∈X  is the set of possible inputs, which need 

not necessarily be a time vector. Given prior information 

about the GP and a set of training points {(xi,fi)| i = 1,…,n}, 

the posterior distribution over functions is derived by 

imposing a restriction on prior joint distribution to contain 

only those functions that agree with the observed data 

points. These functions can be assumed to be noisy as in real 

world situations we have access to only noisy observations 

rather than exact function values, i.e. yi = f(x) + ε, where ε is 

additive IID N(0,σn
2
). Once we have a posterior distribution 

it can be used to assess predictive values for the test data 

points. Following equations describe the predictive 

distribution for GPR [11]. 
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A crucial ingredient in a Gaussian process predictor is the 

covariance function (K(X, X’)) that encodes the assumptions 

about the functions to be learnt by defining the relationship 

between data points. GPR requires a prior knowledge about 

the form of covariance function, which must be derived from 

the context if possible. Furthermore, covariance functions 

consist of various hyper-parameters that define their 

properties. Setting right values of such hyper-parameters is 

yet another challenge in learning the desired functions. 

Although the choice of covariance function must be 

specified by the user, corresponding hyper-parameters can 

be learned from the training data using a gradient based 

optimizer such as maximizing the marginal likelihood of the 

observed data with respect to hyper-parameters [12].  

We used GPR to regress the evolution of internal parameters 

(RE+RCT) of the battery with time. Relationship between 

these parameters and the battery capacity was learned from 

experimental data  [7]. Thus the internal parameters were 

regressed for the data obtained at and the corresponding 
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estimates were translated into estimated battery capacity at 

45ºC using the relationship learnt at 25ºC. 

Neural Network (NN) Approach 

A neural network based approach was considered as an 

alternative data-driven approach for prognostics. A basic 

feed forward neural network with back propagation training 

was used; details on this algorithm can be found in [13, 14]. 

As described earlier for the other approaches, data at 25
o
C 

was used to learn the relationship between internal 

parameter RE+RCT and the capacity C using the neural 

network NN1. In addition, the 45
o
C data was used as a test 

case. Here, measurements of the internal parameter RE+RCT 

are only available up to time tP (time at which RUL 

prediction is made). The available RE+RCT measurements 

are extrapolated after time tP in order to predict future 

values. This extrapolation is done using neural network NN2 

which learns the relationship between RE+RCT and time. 

Once future values for RE+RCT are computed using NN2 

these RE+RCT values are the used as an input to NN1 in order 

to obtain C. 

The structure of NN1 consists of two hidden layers with one 

and three nodes respectively. For the hidden layers tan-

sigmoid transfer functions and for the output layers log-

sigmoid transfer functions were chosen. Training considers 

random initial weights, a reduced memory Levenberg-

Marquardt (LM) algorithm, 200 training epochs, and mean-

squared error as a performance parameter. 

The structure and training parameters of the NN2 remained 

fixed during the forecasting. The net was trained with data 

available up to week 32, and then the resulting model was 

used to extrapolate RE+RCT until tEOP is reached or it is clear 

that it will not be reached if the model does not converge. 

Once the next measurement point is available at week 36, 

the net was trained again including the new data point. The 

resulting model was used to extrapolate RE+RCT from 

tp+1=36 onwards. It is not expected that a fixed net structure 

and fixed training settings could perform optimally for all 

the training instances as measurements become available 

week 32 onwards. To make sure the results are acceptable 

for all the training instances, the initial weights were set to 

random and the training was repeated 30 times. This allowed 

the exploration of with different initial values in the 

optimization of the weights and allowed the exploration of 

different local minimums. The results of the 30 training 

cases were aggregated on the extrapolated values by 

computing the median. Cases were observed where the 

training stopped prematurely resulting in a net with poor 

performance, these cases were regarded as outliers and the 

use of the median was intended to diminish the impact of 

such outliers while aggregating all the training cases. The 

structure of NN2 consists of one hidden layer with three 

nodes, and tan-sigmoid transfer functions for all the layers. 

Training was carried out under similar conditions as 

described earlier for NN1. 

6. PERFORMANCE METRICS 

In this section nine different performance metrics are 

described. Four of them are the metrics most widely used in 

the community, i.e., accuracy, precision, Mean Squared 

Error (MSE), and Mean Absolute Percentage Error 

(MAPE). These are the few most commonly used metrics in 

various forecasting domains and hence have been picked 

among others to illustrate how these metrics are useful but 

may not capture time varying aspects of prognostic 

estimates. These metrics also illustrate a sequence of 

refinements over previous ones to incorporate more aspects 

of performance evaluation. A brief description of these 

metrics is followed by a discussion on prognostics specific 

shortcomings that open the opportunity for defining more 

metrics. Five new metrics have been introduced that 

addressing these shortcomings. These metrics have been 

first defined briefly and then evaluated based on the results 

for battery health management as presented in the following 

section. 

Terms and Notations 

• UUT is the unit under test 

• )(il∆ is the error between the predicted and the true RUL 

at time index i for UUT l. 

• EOP (End-of-Prediction) is the earliest time index, i, 

after prediction crosses the failure threshold. 

• EOL represents End-of-Life, the time index for actual 

end of life defined by the failure threshold. 

• P is the time index at which the first prediction is made 

by the prognostic system. 

• r
l
(i) is the RUL estimate for the l

th
 UUT at time ti as 

determined from measurement and analysis. 

• )(* ir
l is the true RUL at time ti given that data is 

available up to time ti for the l
th
 UUT. 

• l is the cardinality of the set of all time indices at which 

the predictions are made, i.e. ( )EOPiPi ≤≤= |l . 

Average Bias (Accuracy) 

Accuracy represents one of the most important factors in 

determining the usefulness of a prediction. One of the 

difficulties in dealing with criterion of accuracy has been the 

absence of a single universally accepted measure of 

accuracy [15]. Now the researchers seem to accept the 

notion that there is no single definition applicable to all 

situations and specific adjustments are needed [16]. A 

variety of accuracy measures have been defined as and when 

needed and are available through literature [17]. Here we 



 6

include the most basic definition to start the discussion and 

to illustrate how the other commonly used metrics have 

evolved over time to quantify the notion of algorithm 

performance. 

Average bias is one of the conventional metrics that has 

been used in many ways as a measure of accuracy. It 

averages the errors in predictions made at all subsequent 

times after prediction starts for the l
th
 UUT. This metric can 

be extended to average biases over all UUTs to establish 

overall bias. 

   ∑
=

∆=
l

l 1

)(
1

i

l

l iB .        (7) 

Conventionally, this metric aggregates prediction errors 

obtained either from multiple experiments or from a set of 

similar systems operating under identical conditions. In this 

form it does not account for the variability in predictions and 

the presence of outliers. 

Sample Standard Deviation (Precision) 

Precision based metrics are designed to quantify variability 

in predictions. Variability in predictions arises from 

different raw data series, extent of data-preprocessing, 

forecasting algorithms, different prediction horizons, 

different time scales involved, etc. Sample standard 

deviation measures the dispersion/spread of the error with 

respect to the sample mean of the error.  

   
( )

1

)(
1

2

−

−∆
=

∑ =

l

l

i
mi

S         (8) 

where m is the sample mean of the error. 

This metric is restricted to the assumption of normal 

distribution of the error. It is, therefore, recommended to 

carry out a visual inspection of the error plots to determine 

the distribution characteristics before interpreting this 

metric.  

Mean Squared Error (MSE) 

Simple average bias metric suffers from the fact that 

negative and positive errors cancel each other and high 

variance may not be reflected in the metric. Therefore, MSE 

averages the squared prediction error for all predictions and 

encapsulates both accuracy and precision. A derivative of 

MSE, often used, is Root Mean Squared Error (RMSE), 

which has been the most widely used measure of accuracy 

[18]. This is despite the fact that it has been widely accepted 

that a unit free measure should be used for comparisons and 

MSE or RMSE is not unit free.[19] 

  ∑
=

∆=
l

l 1

2)(
1

i

iMSE .        (9) 

MSE based error measures may not be suitable as they are 

sensitive to non-normal data contaminated by outliers, they 

are not reliable for smaller samples, and difficult for users to 

understand [20]. In literature several improvements over 

MSE have been suggested. For instance, while making MSE 

based comparisons across series, relative metrics should be 

computed using a benchmark. E.g. Log Mean Squared Error 

Ratio (LMR) that is computed by taking log of the ratio of 

MSE of desired algorithm to the MSE of a benchmark 

algorithm [21]. Alternatively, comparisons have also been 

made after subtracting MSE of benchmark algorithms [22]. 

Mean Absolute Percentage Error (MAPE) 

For prediction applications it is important to differentiate 

between errors observed far away from the EOL and those 

that are observed close to EOL. Smaller errors are desirable 

as EOL approaches. Therefore, MAPE weighs errors with 

RULs and averages the absolute percentage errors in the 

multiple predictions. Instead of the mean, median can be 

used to compute Median absolute percentage error 

(MdAPE) in a similar fashion. 

 ∑
=

∆
=

l

l 1 * )(

)(1001

i ir

i
MAPE .      (10) 

MAPE has been the most widely used unit-free accuracy 

measure but is relevant only for ratio-scaled data (i.e. data 

with a meaningful zero) [19]. Another disadvantage of the 

MAPE is that it puts a heavier penalty on forecasts that 

exceed the actual than on those that are less than the actual. 

For example, the MAPE is bounded on the low side by an 

error of 100%, but there is no bound on the high side. 

Shortcomings of the Classical Metrics 

As pointed out above, conventional metrics lack in various 

aspects when applied in different situations. These 

shortcomings have been successively tackled by modifying 

these measures in many ways. However on top of that, there 

are some fundamental differences between the performance 

requirements from general forecasting applications and 

prognostics applications that are not addressed by such 

modifications. This directly translates into the design 

differences in evaluation metrics for either case. Some of 

these differences are described below: 

• It must be noted that the metrics mentioned above can be 

more suitably used in cases where either a distribution of 

RUL predictions is available as the algorithm output or 

there are multiple predictions available from several 

UUTs to compute the statistics. Whereas these metrics 

can convey meaningful information in these cases, these 

metrics are not designed for applications where RULs 

are continuously updated as more data is available. 

Prognostics prediction performance (e.g. accuracy and 

precision) tends to be more critical as time passes by and 

the system nears its end-of-life. Considering EOL as a 
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fixed reference point in time, predictions generated at 

different times pose several difficulties in generating an 

aggregate performance measure for an algorithm using 

conventional metrics. Predictions made at an early stage 

have lesser information about the dynamics of fault 

evolution and are required to predict farther in time 

making the prediction task even more difficult as 

compared to predicting at a later stage. Each successive 

prediction utilizes additional data available to it. 

Therefore, a simple aggregate of performance over 

multiple predictions made, as time passes by, is not a fair 

estimate for an algorithm. It may be reasonable in some 

sense to aggregate n-step ahead (fixed horizon) 

predictions made at all times instead of aggregating 

predictions for EOL (moving horizon) or to look at 

performance at specific times relative to the EOL. 

Furthermore, most physical processes describing fault 

evolution tend to be monotonic in nature. In such cases it 

is easier for any algorithm to learn true parameters of the 

process as more data becomes available. Thus, it may be 

equally important to quantify how well an algorithm 

improves with more data. New metrics like α-λ 

performance and relative accuracy are presented later in 

an effort to encapsulate these notions. 

• Following from the previous argument, conventional 

efforts in defining measures of accuracy and precision 

have been towards eliminating any statistical bias arising 

from the nature of the type of system. What lacks from 

the prognostics point of view is a measure that 

encapsulates the notion of performance convergence with 

time. We introduce such metrics, namely cumulative 

relative accuracy and convergence, later in the paper. 

Since prognostics may involve continuously updating a 

prediction, it is desirable to have, in addition to 

performance metrics looking at specific time instances, a 

metric that assesses the overall performance of an 

algorithm at all stages of prediction, i.e. predictions at an 

early stage close to fault detection, middle stage while 

the fault evolves, and the late stage nearing EOL. 

Although, depending on application scenarios criticality 

of predictions at different stages may be ranked 

differently, a robust metric should be capable of making 

an assessment at all stages. This will not only allow 

ranking various algorithms at different stages but also to 

choose an appropriate one based on which stage 

predictions are considered more critical for that 

application. In more sophisticated environments a mix of 

different algorithms may be preferred for different 

stages.  

• Time scales involved in prognostics applications vary 

widely and an important question to answer is “how far 

in advance is it enough to predict with a desired 

confidence in the predictions”. In general it is desired to 

seek reliable prediction enough time in advance so that 

an appropriate corrective action may be planned and 

taken. While the desired performance measures still 

remain the same, which in essence are accuracy and 

precision, one needs to seek answers keeping these issues 

of time criticality in mind. Therefore, it may be useful to 

define metrics that compute appropriate measures at 

times relative to the time remaining until estimated end-

of-life. The prognostic horizon metric described below 

addresses this issue. 

Although the new metrics mentioned above may be 

considered as meta-metrics based on any conventional 

metric, in most cases they are easy to apply and understand 

for accuracy and precision measures. For the sake of 

conciseness and clarity the examples presented here are 

mostly based on the accuracy measure, however, extending 

these metrics to incorporate other measures should be fairly 

straightforward. 

Prognostic Horizon (PH) 

Prediction Horizon has been in the literature for quite some 

time but no formal definition is available. The notion 

suggests that longer the prognostics horizon more time is 

available to act based on a prediction that has some 

credibility. We define Prognostic Horizon as the difference 

between the current time index i and EOP utilizing data 

accumulated up to the time index i, provided the prediction 

meets desired specifications. This specification may be 

specified in terms of allowable error bound (α) around true 

EOL. This metric ensures that the predicted estimates are 

within specified limits around the actual EOL and that the 

predictions may be considered reliable. It is expected that 

PHs are determined for an algorithm-application pair offline 

during the validation phase and then these numbers be used 

as guidelines when the algorithm is deployed in test 

application where actual EOL are not known in advance. 

While comparing algorithms, an algorithm with longer 

prediction horizon would be preferred.  

    iEOPH −=         (11) 

where ( ) ( ){ })1()()1(|min ** αα +≤≤−∧∈= rjrrjji l
l . 

For instance, a PH with error bound of α = 5% identifies 

when a given algorithm starts predicting estimates that are 

within 5% of the actual EOL. Other specifications may be 

used to derive PH as desired. 

α-λ Performance 

Another way to quantify prediction quality may be through a 

metric that determines whether the prediction falls within 

specified levels of a performance measure at particular 

times. These time instances may be specified as percentage 

of total remaining life from the point the first prediction is 

made or a given absolute time interval before EOL is 

reached. For instance, in our implementation we define α-λ 

accuracy as the prediction accuracy to be within α*100% of 

the actual RUL at specific time instance tλ expressed as a 
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fraction of time between the point when an algorithm starts 

predicting and the actual failure. For example, this metric 

determines whether a prediction falls within 20% accuracy 

(i.e., α=0.2) halfway to failure from the time the first 

prediction is made (i.e., λ =0.5). Extension of this metric 

based on other performance measures is straightforward. 

[ ] ( ) ( ) [ ] ( )trtrtr
l

** 11 ⋅+≤≤⋅− αα λ
         (12) 

where   α : accuracy modifier 

     λ: time window modifier 

              ( )PEOLPt −+= λλ
. 

R
U
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)(* ir l
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Figure 3 – Schematic depicting α-λ Accuracy. 

Relative Accuracy (RA) 

Relative prediction accuracy is a notion similar to α-λ 

accuracy where, instead of finding out whether the 

predictions fall within a given accuracy levels at a given 

time instant, we measure the accuracy level. The time instant 

is again described as a fraction of actual remaining useful 

life from the point when the first prediction is made. An 

algorithm with higher relative accuracy is desirable. 

( ) ( )
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Figure 4 – Schematic showing Relative Accuracy 

concept. 

Cumulative Relative Accuracy (CRA) 

Relative accuracy can be evaluated at multiple time 

instances. To aggregate these accuracy levels, we define 

Cumulative Relative Accuracy as a normalized weighted 

sum of relative prediction accuracies at specific time 

instances. 

∑
=

=
l

l 1

)(
1

i

l RArwCRA λλ
,      (14) 

where w is a weight factor as a function of RUL at all time 

indices. In most cases it is desirable to weigh the relative 

accuracies higher closer to the EOL. 

Convergence 

Convergence is defined to quantify the manner in which any 

metric like accuracy or precision improves with time to 

reach its perfect score. As illustrated below, three cases 

converge at different rates. It can be shown that the distance 

between the origin and the centroid of the area under the 

curve for a metric quantifies convergence. Lower distance 

means faster. Convergence is a useful metric since we 

expect a prognostics algorithm to converge to the true value 

as more information accumulates over time. Further, a faster 

convergence is desired to achieve a high confidence in 

keeping the prediction horizon as large as possible. 

Let (xc, yc) be the center of mass of the area under the curve 

M(i). Then, the convergence CM can be represented by the 

Euclidean distance between the center of mass and (tp, 0), 

where 
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M(i) is a non-negative prediction error accuracy or precision 

metric. 
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Figure 5 – Schematic for the convergence of a metric. 
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7. RESULTS & DISCUSSIONS 

As mentioned earlier, battery health measurements were 

taken every four weeks. Therefore, each algorithm was 

tasked to predict every four weeks after week 32, which 

gives eight data points to learn the degradation trend. 

Algorithms predict RULs until the end-of-prediction is 

reached, i.e. the estimates show that battery capacity has 

already hit 70% of the full capacity of one ampere hour. 

Corresponding predictions are then evaluated using all nine 

metrics. Estimates were available for all weeks starting week 

32 through week 64. Algorithms like RVM always predicted 

conservatively, i.e. predicted a faster degradation than 

actually observed. Other algorithms like NN and PR started 

predicting at week 32 but could not predict beyond week 60 

as their estimates had already crossed the failure threshold 

before that. GPR, however, required more training data 

before it could provide any estimates. Therefore, predictions 

for GPR start at week 48 and go until week 60. 

Table 1 – Performance evaluation for all four test 

algorithms with Error Bound = 5%. 

 RVM GPR NN PR 

Bias -7.12 5.96 5.04 1.87 

SSD 6.57 15.24 6.81 4.26 

MSE 84.81 184.16 59.49 17.35 

MAPE 41.36 53.93 37.54 23.05 

PH 8.46 12.46 12.46 24.46 

RA (λ = 0.5) 0.60 0.86 0.34 0.82 

CRA (λ = 0.5) 0.63 0.52 0.55 0.65 

Convergence 14.80 8.85 13.36 11.41 
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Figure 6 – Predictions from different algorithms fall 

within the error bound at different times. 

In Table 1 results are aggregated based on all available 

predictions. These results clearly show that the polynomial 

fit approach outperforms all other algorithms in almost all 

cases. Even though the convergence properties are not the 

best they are comparable to the top numbers. However, 

using all predictions to compute these metrics results in a 

wide range of values, which makes it difficult to assess how 

other algorithms fare even if they may not necessarily be the 

best. Most metrics describe how close or far the predictions 

are to the true value but prediction horizon indicates when 

these predictions enter within the specified error bound and 

therefore may be trust worthy (see Figure 6). PR enters the 

error bound early on where as all other algorithms converge 

slowly as times passes by. The convergence metric 

encapsulates this attribute and shows that algorithms like 

GPR converge faster to better estimates and may be useful 

later on. We also learned that the current convergence 

metric does not take into account cases where algorithms 

start predicting at different time instances. In such cases 

algorithms that start predicting early on may have a 

disadvantage. Although this metric works well in most cases, 

a few adjustments may be needed to make it robust towards 

extreme cases. 

It must be pointed out that these metrics summarize all 

predictions, good or bad, into one aggregate, which may not 

be fair for algorithms that learn over time and get better later 

on. Therefore, next, it was decided to evaluate only those 

predictions that were made within the prediction horizon so 

that only the meaningful predictions are evaluated (Table 2). 

As expected the results change significantly and all the 

performance numbers become comparable for all 

algorithms. This provides a better understanding on how 

these algorithms compare. 

Table 2 – Performance evaluation for all four test 

algorithms for predictions made within prediction 

horizon with Error Bound = 5%. 

 RVM GPR NN PR 

Bias -1.19 -1.78 -1.53 0.22 

SSD 1.18 1.33 1.45 3.33 

MSE 2.03 3.96 3.27 7.75 

MAPE 39.33 30.40 27.44 23.25 

PH 8.46 12.46 12.46 24.46 

RA (λ = 0.5) 0.77 0.62 0.69 0.95 

CRA (λ = 0.5) 0.50 0.31 0.33 0.58 

Convergence 3.76 4.44 4.61 7.36 

 

Another aspect of performance evaluation is the requirement 

specifications. As specifications change the performance 

evaluation criteria also changes. To illustrate this point, we 

now define prediction horizon on a relaxed error bound of 

10%. As expected, prediction horizons become longer for 

most of the algorithms and hence more predictions are taken 

into account while computing the metrics. Table 3 shows the 

results with the new prediction horizons and now the NN 

based approach also seems to perform well on several 

criteria. This means that for some applications where more 

relaxed requirements are acceptable simpler approaches may 

be chosen in order to reduce computational complexity. 

From a practical standpoint simpler algorithms may also 

ease implementation, maintenance and debugging issues, as 

well as being easier to validate and verify. 

 



 10

Table 3 – Performance evaluation for all four test 

algorithms for predictions made within prediction 

horizon with Error Bound = 10%. 

 RVM GPR NN PR 

Bias -1.83 0.05 -1.53 0.22 

SSD 1.73 4.34 1.45 3.33 

MSE 5.02 10.6 3.27 7.75 

MAPE 37.01 31.20 27.44 23.25 

PH 12.46 16.46 12.46 24.46 

RA (λ = 0.5) 0.76 0.79 0.69 0.95 

CRA (λ = 0.5) 0.57 0.43 0.33 0.58 

Convergence 5.49 3.43 4.61 7.36 

Figure 7 shows the α-λ Accuracy metric for all four 

algorithms. Since all algorithms except GPR start prediction 

from week 32 onward, tλ is determined to be around 48.3 

weeks. At that point only PR lies within 80% accuracy 

levels. GPR starts predicting week 44 onward, i.e. its tλ is 

determined to be around 54.3 week where it seems to meet 

the requirements. This metric signifies whether a particular 

algorithm reaches within a desired accuracy level halfway to 

the EOL from the point it starts predicting. Another aspect 

that may be of interest is whether an algorithm reaches the 

desired accuracy level some fixed time interval ahead of the 

EOL. In that case, for example, if tλ is chosen as 48 weeks 

then GPR will not meet the requirement. Therefore, this 

metric may be modified to incorporate cases where not all 

algorithms may be able to start predicting at the same time.  

It can be observed from the Figure 7 that most algorithms 

fail to follow the trend towards the end. These data-driven 

regression based techniques find it difficult to learn the 

physical phenomenon by which batteries degrade. As shown 

in Figure 8, towards the end of the run the battery capacity 

degradation slows down. These algorithms are not able to 

learn this characteristic and predict an earlier EOL. 
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Figure 7 – The α-λ Accuracy metric determines whether 

predictions are within the cone of desired accuracy levels 

at a given time instant (tλ). 
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Figure 8 – Battery capacity decay profile shows several 

features that are difficult to learn using simple 

regression techniques. 

Finally, we would like to mention a few key points that are 

important for performance evaluation and should be 

considered ahead of choosing the metrics. Time scales 

observed often very different in different applications. For 

instance, in battery health management time scales are in the 

order of weeks whereas in other cases like electronics it may 

be a matter of hours or seconds. Therefore, the chosen 

metrics should acknowledge the importance of prediction 

horizon and weigh errors close to EOL with higher 

penalties. Next, these metrics may be modified to address 

asymmetric preference on RUL error. In most applications 

where a failure may lead to catastrophic outcomes an early 

prediction is preferred over late predictions. Finally, in the 

example discussed in this paper RUL estimates were 

obtained as a single value as opposed to a RUL distribution 

for every prediction. The metrics presented in this paper can 

be applied to applications where RUL distributions are 

available with slight modifications. Similarly for cases 

where multiple UUTs are available to provide data, minor 

adjustments will suffice. 

8. CONCLUSIONS 

In this paper we have shown how performance metrics for 

prognostics can be designed. Four different prediction 

algorithms were used to show how various metrics convey 

different kinds of information. No single metric should be 

expected to cover all aspects of prediction algorithms and 

performance criteria. Depending on the requirements a 

subset of these metrics should be chosen and a decision 

matrix should be used to rank different algorithms. As we 

move away from the use of a single performance measure to 

the consideration of multiple measures that provide 

information about multiple characteristics, we recognize that 

different methods tend to have somewhat different strong 

points and weak points. Evidence suggests that no single 

method is able to dominate on all dimensions of 

performance, and any choice of a single method involves 

tradeoffs.  

In this paper we used nine metrics including four 

conventional ones that are most commonly used to evaluate 
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algorithm performance. The most common accuracy metrics 

like bias or error lack the perspective of aggregate 

performance where multiple predictions are made. Other 

classical metrics like standard deviation, MSE and MAPE 

do measure aggregate performance over several prediction 

events, but they implicitly seem to exclude the special 

requirements of making multiple RUL predictions over a 

single aging cycle, where the performance requirements 

become stricter as we near the EOL event. Specifically, 

there are no conventional convergence metrics for 

prognostic prediction performance. Similarly, there has not 

been much effort to capture the need to have the prognostics 

result available some minimum amount of time ahead of the 

predicted EOL in order to take appropriate corrective action.  

The new metrics provide additional information that is 

useful in comparing prognostic algorithms. Specifically, 

these metrics track the evolution of prediction performance 

over time and help determine when these predictions can be 

considered trustworthy. Notions like convergence and 

prediction horizon that have existed in the literature for a 

long time have been quantified so they can be used in an 

automated fashion. Further, new notions of performance 

measures at specific time instances have been instantiated 

using metrics like relative accuracy and α-λ performance. 

These metrics represent the notion that a prediction is useful 

only if it is available so far in advance that it allows enough 

time to mitigate the predicted contingency. 

While a comparison has been made between four different 

algorithms, due to various reasons this paper is not intended 

to establish ranks for these algorithms. First of all, generally 

speaking, these rankings are application specific and the 

rank order established in this study may or may not be 

applicable to other applications. Furthermore, even though 

efforts were made to use same methods of data-

preprocessing, individual levels for fine tuning of the 

algorithms were not controlled. Hence the performance of a 

specific algorithm, here, may not be generalized over its all 

implementations and applications. The focus in this paper is 

rather on showing how new metrics provide additional 

useful information that may be useful in ranking prognostic 

performance for decision making. 

9. FUTURE WORK 

Whereas the presented metrics demonstrate several ideas 

specific to prognostics performance evaluation, we by no 

means claim this list of metrics to be near perfect. It is 

anticipated that as new ideas are generated and the metrics 

themselves are evaluated in different applications, this list 

will be revised and refined before a standard methodology 

can be devised for evaluating prognostics. This paper is 

intended to serve as a start towards developing such metrics 

that can better summarize prognostic algorithm 

performance. 

The most crucial issue in prognostic performance evaluation 

is how to express confidence in a prediction without the 

benefit of hindsight. Most of the system health management 

schemes being developed are for new engineering systems, 

for which little or no archival database exists. Furthermore, 

design requirements now call for failure avoidance action to 

be taken based on prognostic results, thus changing the 

behavior of the system and preventing direct evaluation of 

the prediction performance. There are no clear solutions to 

this issue, although mapping the system health to an 

observable system variable and performing short term 

prediction assessment might provide some insight. 

Other notions of prediction performance worthy of note 

include robustness to effects like sensor loss, variation in 

data acquisition sampling rate and differences in training 

and test datasets. The amount of data required to train a 

prognostic algorithm offline or to tune it online is also an 

important consideration. A number of metrics encapsulating 

these ideas have been introduced in [1]. As mentioned 

before, these metrics are a work in progress. We plan to 

encode these metrics and evaluate their usefulness over a 

variety of prognostic algorithms and applications in the 

future. 
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